Title Finite Element Method	Code 10102512710102102822
Field	Year / Semester
Mechanical Engineering	4/7
Specialty	Course
-	core
Hours	Number of credits
Lectures: 1 Classes: - Laboratory: 1 Projects / seminars: -	3
	Language
	polish

Lecturer:

- dr hab. Tomasz Stręk, tel. +48-61-6652300 e-mail: tomasz.strek@put.poznan.pl, ,

dr inż. Henryk Kamiński tel. +48-61-6652329 e-mail: henryk.kaminski@put.poznan.pl

Faculty:

Faculty of Mechanical Engineering and Management ul. Piotrowo 3 60-965 Poznań tel. (061) 665-2361, fax. (061) 665-2363 e-mail: office_dmef@put.poznan.pl

Status of the course in the study program:

- Obligatory course of the study programs for the branch.

Assumptions and objectives of the course:

- The student should gain theoretical knowledge and practice in numerical computation by the Finite Element Method (FEM) for solution of basic linear and non-linear problems in science and engineering, described by partial differential equations.

Contents of the course (course description):

- Mathematical fundamentals of FEM. Boundary value problems for ordinary and partial differential equations. Elipticity condition for a differential operator. Integral form of a boundary value problem. Kinds of boundary conditions. Solving basic 1D and 2D boundary value problems.

Introduction to the Comsol Multiphysics simulation software environment.

Modeling and solving a conductive heat transfer problem.

Modeling and solving a structural mechanics problem.

Modeling and solving thermal-structural interaction problems (thermal expansion). Modeling and solving a fluid dynamics problem. Modeling and solving a problem that involves both fluid dynamics and heat transfer (thermal conduction and thermal convection).

Introductory courses and the required pre-knowledge:

- Mathematical analysis, ordinary and partial differential equations, vector and matrix calculus. Basic skills in programming and numerical methods.

Courses form and teaching methods:

- Lectures aided by presentations of FEM calculations results.
- Laboratory: solving selected engineering problems with use of modern computational systems.

Form and terms of complete the course - requirements and assessment methods:

- Project that contains: problem description, theoretical fundamentals ? equations and

conditions, presentation of results and their analysis with conclusions and summary.

Basic Bibliography:

Additional Bibliography: